On the LHeC Project
http://cern.ch/lhec

P. Kostka - for the LHeC Study Group

NEW TRENDS IN HIGH-ENERGY PHYSICS
(experiment, phenomenology, theory)

Alushta, Crimea, Ukraine, September 3 - 10, 2011

The project is intended to become part of European deliberation of future directions of particle physics.

It must be seen in the context of the LHC and the results there; it will substantially enrich and extend its physics program and further exploits the investment made in the LHC.
New Terascale Facility

- Electrons of 60-140 GeV collide with LHC protons of 7000 GeV
- ep design $L \approx 10^{33}$ cm$^{-2}$s$^{-1}$ with E_{cms} in the range of 1-2 TeV
 - exceeding the integrated luminosity at HERA by 2 orders of magnitude and the kinematic range by a factor of 20 in $(Q^2; x^{-1})$
Exciting Physics Program

- Electrons of 60-140 GeV collide with LHC protons of 7000 GeV

- \(\text{ep design } L \approx 10^{33} \text{ cm}^{-2}\text{s}^{-1} \text{ with } E_{\text{cms}} \text{ in the range of 1-2 TeV} \)
 - exceeding the integrated luminosity at HERA by 2 orders of magnitude and the kinematic range by a factor of 20 in \((Q^2; x^{-1})\)

- Physics complementing the LHC

- High precision deep inelastic scattering (DIS)

- Address important questions in strong and electroweak interactions

- Includes electron-ion (eA) scattering into a \((Q^2; x^{-1})\) 4 orders of magnitude extended compared to previous lepton-nucleus DIS experiments.

Selected Highlights

- \(\alpha_s\) measured to per mille
 \(\rightarrow\) Grand unification of the couplings

- Complete unfolding of proton structure
 \(\rightarrow\) Maximise the potential of LHC

- Saturation at low \(x\)
 \(\rightarrow\) Study in pQCD regime

- eA - nuclear structure functions
 \(\rightarrow\) Complementary to e.g. EIC

- Heavy flavour factory, precision tests of the treatment of mass in pQCD
 \(\rightarrow\) Understand the fits

- Leptoquarks, excited electrons, Higgs
 \(\rightarrow\) Complementary to LHC searches
Deep Inelastic e/μ p Scattering

Physics

eQ states
GUT ($\delta a_s=0.1\%$)
Excited fermions
Hot/cold spots
Single top Higgs
PDFs
Multi-Jets
DVCS
Unintegrated partons
Saturation
Vector Mesons
IP - graviton
Odderon
NC couplings
$\sin^2\Theta$
Beauty
Charm
Partons in nuclei
Shadowing

...
Accelerator Concept(s)

LH C
Add e^\mp (polarised) on genuine p/A beams and running *simultaneously* with LHC program
Add e^\mp (polarised) on genuine p/A beams and running *simultaneously* with LHC program

Ring-Ring (RR)
First considered 1984: LEP x LHC

Difficulties:
building e ring into LHC tunnel,
synchrotron radiation and
limitations of energy
Add e^\mp (polarised) on genuine p/A beams and running simultaneously with LHC program.

Ring-Ring (RR)
First considered 1984: LEP x LHC
Difficulties: building e ring into LHC tunnel, synchrotron radiation and limitations of energy

Linac-Ring (LR)
THera (DESY)
low interference with LHC, higher electron energy, lower lumi at reasonable power
Add e^\mp (polarised) on genuine p/A beams and running simultaneously with LHC program

Ring-Ring (RR)
First considered 1984: LEP x LHC
Difficulties:
building e ring into LHC tunnel, synchrotron radiation and limitations of energy

Linac-Ring (LR)
THera (DESY)
low interference with LHC, higher electron energy, lower lumi at reasonable power
The LHeC Ring-Ring

Challenging: bypassing the main LHC Detectors

For the CDR the bypass concepts were decided to be confined to ATLAS and CMS. LHCb bypass may be similar.

Figure 7.1: Schematic Layout of the LHeC: In grey the LEP tunnel now used for the LHC, in red the LHC extensions. The two LHeC bypasses are shown in blue. The RF is installed in the central straight section of the two bypasses. The bypass around Point 1 hosts in addition the injection.
Challenging: bypassing the main LHC Detectors

For the CDR the bypass concepts were decided to be confined to ATLAS and CMS. LHCb bypass may be similar.

The e-injector is a 10 GeV sc linac in triple racetrack configuration.

Figure 7.1: Schematic Layout of the LHeC: In grey the LEP tunnel now used for the LHC, in red the LHC extensions. The two LHeC bypasses are shown in blue. The RF is installed in the central straight section of the two bypasses. The bypass around Point 1 hosts in addition the injection.
For the CDR the bypass concepts were decided to be confined to ATLAS and CMS. LHCb bypass may be similar.

Bypassing CMS: 20m distance to Cavern

Bypassing ATLAS: 100m wo survey gallery

Figure 7.1: Schematic Layout of the LHeC: In grey the LEP tunnel now used for the LHC, in red the LHC extensions. The two LHeC bypasses are shown in blue. The RF is installed in the central straight section of the two bypasses. The bypass around Point 1 hosts in addition the injection.
The LHeC Ring-Ring

Challenging: Installation with LHC circumference

requires:
support structure with efficient installation and compact magnets (Novosibirsk, CERN dipole-prototypes)

LHeC Ring Dipole Magnet
.12-.8T
1.3kA
0.8MW

5m long (35cm)²
slim + light for installation
The LHeC Ring-Ring
Integration in the LHC tunnel
The LHeC Ring-Ring

Integration in the LHC tunnel

RF Installation in IR4

Cryo link in IR3

IP2
The LHeC Ring-Ring
Integration in the LHC tunnel

- RF Installation in IR4
- Cryo link in IR3
- Arc Cell Design – Double FODO

- No interference with LHC
- Meets design parameters
- Synchrotron radiation energy loss < 50 MW (maximum dipole filling)
- 2 quadrupoles families
- Reasonable sextupole strength and length
Maximum energy with the Ring-Ring arrangement could reach about 120 GeV - however, many parameters to be extreme - rf power and synchrotron radiation effects increase $\propto E^4_e$.
The LHeC Linac-Ring
The LHeC Linac-Ring

LR LHeC: recirculating * linac with e± energy recovery, or straight linac

*) bypassing own IP
Baseline Linac-Ring Option

Super Conducting Linac with Energy Recovery & high current (> 6mA)

Two 1 km long sc Linacs (10GeV) in cw operation (Q ≈ 1010)

Relatively large return arcs
ca. 9 km underground tunnel installation
total of 19 km bending arcs
same magnet design as for RR option: > 4500 magnets
Baseline Linac-Ring Option

Super Conducting Linac with Energy Recovery & high current (> 6mA)

Two 1 km long sc Linacs (10GeV) in cw operation (Q ≈ 1010)

Relatively large return arcs
ca. 9 km underground tunnel installation
total of 19 km bending arcs
same magnet design as for RR option: > 4500 magnets

required for high luminosity, the linac must be based on superconducting (SC) radiofrequency (RF) technology. The development and industrial production of its components can exploit synergies with numerous other advancing SC-RF projects around the world, such as the DESY XFEL, eRHIC, ESS, ILC, CEBAF upgrade, CESR-ERL, JLAMP, and the CERN HP-SPL.
Ring-Ring Option

Luminosity $10^{33}\text{cm}^{-2}\text{s}^{-1}$ rather ‘easy’ to achieve
Electrons and Positrons
Energy limited by synchrotron radiation
Polarisation ~30%
Magnets, Cryosystem: no major R+D, just D
10 GeV Injector possibly using ILC type cavities
Interference with the proton machine
Bypasses for LHC experiments (~3km tunnel)

LINAC-Ring Option

Luminosity $10^{33}\text{cm}^{-2}\text{s}^{-1}$ possible to achieve for e^- with ERL
Positrons require E recovery AND recycling, L+ < L-
Energy limited by synchrotron radiation in racetrack mode
Polarisation ‘easy’ for e^- ~90%, rather difficult for e^+
721 MHz Cavities: Synergy with SPL, ESS, XFEL, ILC, eRHIC
Cryo: fraction of LHC cryo system
Smaller interference with the proton machine
Bypass of own IP
Extended dipole at ~1m radius in detector
Shafts on CERN territory (~9km tunnel below St Genis for IP2)
Ring-Ring Option

Luminosity $10^{33}\text{cm}^{-2}\text{s}^{-1}$ rather ‘easy’ to achieve
Electrons and Positrons
Energy limited by synchrotron radiation
Polarisation ~30%
Magnets, Cryosystem: no major R+D, just D
10 GeV Injector possibly using ILC type cavities
Interference with the proton machine
Bypasses for LHC experiments (~3km tunnel)

LINAC-Ring Option

Luminosity $10^{33}\text{cm}^{-2}\text{s}^{-1}$ possible to achieve for e⁻ with ERL
*Positrons require E recovery AND recycling, L+ < L-
Energy limited by synchrotron radiation in racetrack mode
Polarisation ‘easy’ for e⁻ ~90%, rather difficult for e⁺
721 MHz Cavities: Synergy with SPL, ESS, XFEL, ILC, eRHIC
Cryo: fraction of LHC cryo system
Smaller interference with the proton machine
Bypass of own IP
Extended dipole at ~1m radius in detector
Shafts on CERN territory (~9km tunnel below St Genis for IP2)

RR: electrons beam circulates in the existing LHC tunnel

LR: less invasive with respect to the existing LHC, needs the construction of a new linear accelerator complex
LR Interaction Region

Special attention is devoted to the interaction region design, which comprises beam bending, direct and secondary synchrotron radiation, vacuum and beam pipe demands.

- **Dipoles around the IP** (2 x 9m, 0.3T)
 make electrons collide head-on with p-beam 2 & safely extract the disrupted electron beam.

- Simulation of SR load in the IR and design of absorbers / masks
 shielding SR from backscattering into the detector & from propagating with e^\pm beam.

- Beam pipe design - **space for SR fan** - tracking/calorimetry close to the IP / beam line (goal: 1°-179°)

Figure 9.14: LHeC interaction region with a schematic view of synchrotron radiation. Beam trajectories with 5σ and 10σ envelopes are shown.

3 beams, head-on collisions

Photon Number Density at the IP

Photon Number Density at the IP

- **3 beams**, head-on collisions

- **Beam pipe design** - **space for SR fan** - tracking/calorimetry close to the IP / beam line (goal: 1°-179°)
RR Beam Optics and Detector Acceptance

- **High Acceptance**
 - first e beam magnet placed at \(z= \pm 6.2\)m
 - \(L \sim 7.3 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}\) \((1° < \theta < 179°)\)

- \(L \sim 1.3 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}\) \((10° < \theta < 170°)\)
- **High Luminosity**
- Low \(\beta^*\) magnets near the IP (HERA2) \((at z= \pm 1.2\)m\)

- Detector flexible accommodating both HA / HL
 - (forward / backward tracker & calorimeter end-caps)

RR: 1mrad crossing angle \((25\text{ns bunch spacing}; avoiding parasitic interactions)\);
LR: head on \((but dipoles for beam separation over full detector length + beyond)\)

Consequences on detector design:

- **RR Lower Lumi, Low Q^2 access \(\rightarrow High\) Acceptance detector 1° - 179°
- **RR Higher Lumi, High Q^2 access \(\rightarrow High\) Luminosity detector 10° - 170° aperture
RR Beam Optics and Detector Acceptance

- **High Acceptance**
 - first e beam magnet placed at z= ±6.2m
 - $L \sim 7.3 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ ($1^\circ < \theta < 179^\circ$)
 - ↓ factor ~ 2 only

- **Luminosity**
 - $L \sim 1.3 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ ($10^\circ < \theta < 170^\circ$)
 - High Luminosity
 - Low β^* magnets near the IP (HERA2) (at z= ±1.2m)

- Detector flexible accommodating both HA / HL
 - (forward / backward tracker & calorimeter end-caps)

RR: 1mrad crossing angle (25ns bunch spacing; avoiding parasitic interactions);
LR: head on (but dipoles for beam separation over full detector length + beyond)

Consequences on detector design:

- **RR Lower Lumi, Low Q^2 access** → **High Acceptance detector** 1$^\circ$ - 179$^\circ$
- **RR Higher Lumi, High Q^2 access** → **High Luminosity detector** 10$^\circ$ - 170$^\circ$ aperture
The LHeC Detector Concept(s)

• High Precision
 resolution, calibration, low noise at low y, tagging of b,c;
 based on the recent detector developments, using settled technology,
 avoiding R&D programs.

• Modular and flexible - accommodating the HA/HL physics programs (RR);
 High modularity - “fast” detector construction above ground; access.

• Small radius and thin beam pipe optimized in view of aperture
 (1-179° acceptance for low Q^2, high x access),
 synchrotron radiation and background production.

• Affordable - comparatively reasonable cost.
LR detector in the r-z plane

dipole (radius \(\sim 0.6\text{m}, 0.3\text{T}\)) and solenoid (3.5T) placement between the electromagnetic and the hadronic calorimeters.

The IP is surrounded by a central tracker system, large forward and backward tracker telescopes and sets of calorimeters.

Detector dimensions \(z\approx14\text{m}, \text{ diameter } \varnothing\approx9\text{m}\).
LR detector in the r-z plane
dipole (radius ~0.6m, 0.3T) and solenoid (3.5T) placement between the electromagnetic and the hadronic calorimeters.

The IP is surrounded by a central tracker system, large forward and backward tracker telescopes and sets of calorimeters.

Detector dimensions z≈14m, diameter ∅≈9m.

RR option only (no dipole) - High Acceptance
Option studied also where the larger solenoid surrounds the hadronic calorimetry.

Magnetic field outside the solenoid (3.5T) is ≈1.5T;
Volume instrumented with 3 multilayers of muon chambers.

The overall dimensions of this detector configuration are about 11m length and 8m diameter.
The baseline configuration (LR case).

Central barrel:
- silicon pixel detector (CPT)
- silicon tracking detectors (CST, CFT/CBT)
- electromagnetic calorimeter (EMC)
- surrounded by the magnets (Solenoid, Dipoles)
- hadronic calorimeter (HAC)

Backward silicon tracker (BST)
- energy measured in the BEC and BHC calorimeters

Forward silicon tracking (FST)
- and calorimetry (FEC, FHC) measuring TeV energy final states
The baseline configuration (LR case).

Central barrel:
- silicon pixel detector (CPT)
- silicon tracking detectors (CST,CFT/CBT)
- electromagnetic calorimeter (EMC)
- surrounded by the magnets (Solenoid, Dipoles)
- hadronic calorimeter (HAC)

Backward silicon tracker (BST)
- energy measured in the BEC and BHC calorimeters

Forward silicon tracking (FST)
- and calorimetry (FEC, FHC) measuring TeV energy final states

Detector design
- follow BP shape (CPT/CST shown)

Linac-Ring - beam pipe
inner-R_{circ}=2.2cm
inner-$R_{\text{elliptical}}$=10.cm
The baseline configuration (LR case).

Central barrel:
- silicon pixel detector (CPT)
- silicon tracking detectors (CST,CFT/CBT)
- electromagnetic calorimeter (EMC)
- surrounded by the magnets (Solenoid, Dipoles)
- hadronic calorimeter (HAC)

Backward silicon tracker (BST)
- energy measured in the BEC and BHC calorimeters

Forward silicon tracking (FST)
- and calorimetry (FEC, FHC) measuring TeV energy final states

Main detector for the RR
- luminosity maximised by low β quadrupole magnets

The forward/backward tracking has been removed and the outer calorimeter inserts have been moved nearer to the interaction point.

Detector design
- follow BP shape (CPT/CST shown)

Linac-Ring - beam pipe
- inner-$R_{\text{circ}}=2.2\text{cm}$
- inner-$R_{\text{elliptical}}=10\text{.cm}$
The baseline configuration (LR case).

Central barrel:
- silicon pixel detector (CPT)
- silicon tracking detectors (CST, CFT/CBT)
- electromagnetic calorimeter (EMC)
 surrounded by the magnets (Solenoid, Dipoles)
 hadronic calorimeter (HAC)

Backward silicon tracker (BST)
- energy measured in the BEC and BHC calorimeters

Forward silicon tracking (FST)
- and calorimetry (FEC, FHC) measuring TeV energy final states

Main detector for the RR
- luminosity maximised by low β quadrupole magnets

The forward/backward tracking has been removed and the outer calorimeter inserts have been moved nearer to the interaction point.

For numeric studies and plots see recent talks at
DIS10, DIS11, ICHEP10, EPS11, IPAC11, …
EIC and LHeC Workshops
at http://cern.ch/lhec
of course: CDR to be published (more then 500 pages yet)
CERN Medium Term Plan
draft as of July 2011, from [724]

Not yet approved!

LHeC Tentative Time Schedule

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TDR</td>
<td></td>
</tr>
<tr>
<td>RF Prototype development</td>
<td></td>
</tr>
<tr>
<td>RF Production & Test stand operation</td>
<td></td>
</tr>
<tr>
<td>Magnet pre-series</td>
<td></td>
</tr>
<tr>
<td>Magnet Production & testing</td>
<td></td>
</tr>
<tr>
<td>Legal preparation</td>
<td></td>
</tr>
<tr>
<td>Civil engineering</td>
<td></td>
</tr>
<tr>
<td>Infrastruc.</td>
<td></td>
</tr>
<tr>
<td>Installation</td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td></td>
</tr>
</tbody>
</table>

Machine only

We base our estimates for the project timeline on the experience of other projects, such as (LEP, LHC and LINAC4 at CERN and the European XFEL at DESY and the PSI XFEL). In
Next Steps of the LHeC Project

2011
1. Complete CDR Draft ✓
2. Workshop on positron intensity (20.5.11 at CERN) ✓
4. Update and Print and Hand in to ECFA/NuPECC/CERN
5. Workshop on Linac vs Ring (Fall 2011) [main features, R+D design]

2011/12
1. Participation in European Strategy Process (EPS Grenoble ... 2012 conclusion)
2. Update physics programme when LHC Higgs/SUSY results consolidate (DIS12)
3. Form an international accelerator development group based at CERN
4. Build an LHeC Collaboration for preparation of LoI on the Detector

Predicting is difficult, in particular when it concerns the future (V. Weisskopf)

but there is a project and a plan and so there shall be a future for DIS at the energy frontier
Conclusions

• Both machine variants RR/LR could be realised in time for the HL LHC running (~2023)
 - some R&D / prototyping necessary (LR mostly);
 - synergies with other projects

• The detector ensuring the physics program
 - high precision; first simulations promising
 - flexible/modular
 - using available technology

• New and exciting physics of DIS in $e^{\mp}_{\text{polarized}} \cdot \frac{p}{A}$ at CERN

• Thanks to my colleagues from whom I have taken slides/details and with whom I’m enjoying the LHeC adventure

• … the LHeC is already half built (J.Engelen)
Fruitfully Collider Triumvirate at Terascale

The TeV Scale [2010-2035..]

pp
- W, Z, top
- Higgs??
- New Particles??
- New Symmetries?
- LHC

ep
- High Precision QCD
- High Density Matter Substructure??
- eq-Spectroscopy??
- LHeC

New Physics

e^+e^-
- tt
- Higgs??
- New Spectroscopy??
- ILC/CLIC

Max Klein, Liverpool

It should be used
<table>
<thead>
<tr>
<th>Author</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Adolphsen (SLAC)</td>
<td>A. Dudarev (CERN)</td>
</tr>
<tr>
<td>S. Alekhin (Serpukhov, DESY)</td>
<td>A. Eide (NTNU)</td>
</tr>
<tr>
<td>A.N. Akai (Ankara)</td>
<td>E. Eroglu (Uludag)</td>
</tr>
<tr>
<td>H. Aksakal (CERN)</td>
<td>K.J. Eskola (Jyvaskyla)</td>
</tr>
<tr>
<td>P. Alport (Liverpool)</td>
<td>L. Favart (IIHE Brussels)</td>
</tr>
<tr>
<td>J.L. Albacete (IPhT Saclay)</td>
<td>M. Fitterer (CERN)</td>
</tr>
<tr>
<td>V. Andreev (LPI Moscow)</td>
<td>S. Forte (Milano)</td>
</tr>
<tr>
<td>R. Appleby (Cockcroft)</td>
<td>P. Gambino (Torino)</td>
</tr>
<tr>
<td>N. Armesto (St. de Compostela)</td>
<td>T. Gehrmann (Zurich)</td>
</tr>
<tr>
<td>G. Azuelos (Montreal)</td>
<td>C. Glasman (Madrid)</td>
</tr>
<tr>
<td>M. Bai (BNL)</td>
<td>R. Godbole (Tata)</td>
</tr>
<tr>
<td>D. Barber (DESY)</td>
<td>B. Goddard (CERN)</td>
</tr>
<tr>
<td>J. Bartels (Hamburg)</td>
<td>T. Greenshaw (Liverpool)</td>
</tr>
<tr>
<td>J. Behr (DESY)</td>
<td>A. Guffanti (Freiburg)</td>
</tr>
<tr>
<td>O. Behnke (DESY)</td>
<td>V. Guzey (Jefferson)</td>
</tr>
<tr>
<td>S. Belyaev (CERN)</td>
<td>C. Gwenlan (Oxford)</td>
</tr>
<tr>
<td>I. Ben Zvi (BNL)</td>
<td>T. Han (Harvard)</td>
</tr>
<tr>
<td>N. Bernard (UCLA)</td>
<td>Y. Hao (BNL)</td>
</tr>
<tr>
<td>S. Bertolucci (CERN)</td>
<td>F. Haug (CERN)</td>
</tr>
<tr>
<td>S. Biswal (Orissa)</td>
<td>W. Herr (CERN)</td>
</tr>
<tr>
<td>S. Bettoni (CERN)</td>
<td>B. Holzer (CERN)</td>
</tr>
<tr>
<td>J. Bluemlein (DESY)</td>
<td>M. Ishitsuka (Tokyo I.Tech.)</td>
</tr>
<tr>
<td>H. Boettcher (DESY)</td>
<td>M. Jacquet (Orsay, LAL)</td>
</tr>
<tr>
<td>H. Braun (PSI)</td>
<td>B. Jeanneret (CERN)</td>
</tr>
<tr>
<td>S. Brodsky (SLAC)</td>
<td>J.M. Jimenez (CERN)</td>
</tr>
<tr>
<td>A. Bogacz (Jlab)</td>
<td>H. Jung (DESY)</td>
</tr>
<tr>
<td>C. Bracco (CERN)</td>
<td>J. Jowett (CERN)</td>
</tr>
<tr>
<td>O. Bruening (CERN)</td>
<td>H. Karadeniz (Ankara)</td>
</tr>
<tr>
<td>E. Bulyak (Charkov)</td>
<td>D. Kayran (BNL)</td>
</tr>
<tr>
<td>A. Bunyatian (DESY)</td>
<td>F. Kosac (Uludag)</td>
</tr>
<tr>
<td>H. Burkhardt (CERN)</td>
<td>A. Klic (Uludag)</td>
</tr>
<tr>
<td>I.T. Cakir (Ankara)</td>
<td>K. Kimura (Tokyo I.Tech.)</td>
</tr>
<tr>
<td>O. Cakir (Ankara)</td>
<td>M. Klein (Liverpool)</td>
</tr>
<tr>
<td>R. Calaga (BNL)</td>
<td>U. Klein (Liverpool)</td>
</tr>
<tr>
<td>E. Ciapala (CERN)</td>
<td>T. Kluge (Hamburg)</td>
</tr>
<tr>
<td>R. Ciftci (Ankara)</td>
<td>G. Kramer (Hamburg)</td>
</tr>
<tr>
<td>A.K. Ciftci (Ankara)</td>
<td>M. Korostelev (Cockcroft)</td>
</tr>
<tr>
<td>B.A. Cole (Columbia)</td>
<td>A. Kosmicki (CERN)</td>
</tr>
<tr>
<td>J.C. Collins (Penn State)</td>
<td>P. Kostka (DESY)</td>
</tr>
<tr>
<td>J. Dainton (Liverpool)</td>
<td>H. Kowalski (DESY)</td>
</tr>
<tr>
<td>A. De Roeck (CERN)</td>
<td>D. Kuchler (CERN)</td>
</tr>
<tr>
<td>D. d'Enfertia (CERN)</td>
<td>M. Kuze (Tokyo I.Tech.)</td>
</tr>
<tr>
<td>A. Dudarev (CERN)</td>
<td>T. Lappi (Jyvaskyla)</td>
</tr>
<tr>
<td>A. Eide (NTNU)</td>
<td>P. Laycock (Liverpool)</td>
</tr>
<tr>
<td>E. Eroglu (Uludag)</td>
<td>E. Levichev (BINP)</td>
</tr>
<tr>
<td>K.J. Eskola (Jyvaskyla)</td>
<td>S. Levonian (DESY)</td>
</tr>
<tr>
<td>L. Favart (IIHE Brussels)</td>
<td>V.N. Litvinenko (BNL)</td>
</tr>
<tr>
<td>M. Fitterer (CERN)</td>
<td>A.Lombardi (CERN)</td>
</tr>
<tr>
<td>S. Forte (Milano)</td>
<td>C. Marquet (CERN)</td>
</tr>
<tr>
<td>P. Gambino (Torino)</td>
<td>B. Mellado (Harvard)</td>
</tr>
<tr>
<td>T. Gehrmann (Zurich)</td>
<td>K-H. Mess (CERN)</td>
</tr>
<tr>
<td>C. Glasman (Madrid)</td>
<td>S. Moch (DESY)</td>
</tr>
<tr>
<td>R. Godbole (Tata)</td>
<td>I.I. Morozov (BINP)</td>
</tr>
<tr>
<td>B. Goddard (CERN)</td>
<td>Y. Muttoni (CERN)</td>
</tr>
<tr>
<td>T. Greenshaw (Liverpool)</td>
<td>S. Myers (CERN)</td>
</tr>
<tr>
<td>A. Guffanti (Freiburg)</td>
<td>S. Nandi (Montreal)</td>
</tr>
<tr>
<td>V. Guzey (Jefferson)</td>
<td>P.R. Newman (Birmingham)</td>
</tr>
<tr>
<td>C. Gwenlan (Oxford)</td>
<td>T. Omori (KEK)</td>
</tr>
<tr>
<td>T. Han (Harvard)</td>
<td>J. Osborne (CERN)</td>
</tr>
<tr>
<td>Y. Hao (BNL)</td>
<td>Y. Papaphilippou (CERN)</td>
</tr>
<tr>
<td>F. Haug (CERN)</td>
<td>E. Paoloni (Pisa)</td>
</tr>
<tr>
<td>W. Herr (CERN)</td>
<td>C. Pascaud (LAL Orsay)</td>
</tr>
<tr>
<td>B. Holzer (CERN)</td>
<td>H. Paukkunen (St. de Compostela)</td>
</tr>
<tr>
<td>M. Ishitsuka (Tokyo I.Tech.)</td>
<td>E. Perez (CERN)</td>
</tr>
<tr>
<td>M. Jacquet (Orsay, LAL)</td>
<td>T. Pieloni (CERN)</td>
</tr>
<tr>
<td>B. Jeanneret (CERN)</td>
<td>E. Pileric (Uludag)</td>
</tr>
<tr>
<td>J.M. Jimenez (CERN)</td>
<td>A. Polini (Bologna)</td>
</tr>
<tr>
<td>H. Jung (DESY)</td>
<td>V. Pitsyn (BNL)</td>
</tr>
<tr>
<td>J. Jowett (CERN)</td>
<td>Y. Pupkov (BINP)</td>
</tr>
<tr>
<td>H. Karadeniz (Ankara)</td>
<td>V. Radescu (Heidelberg U)</td>
</tr>
<tr>
<td>D. Kayran (BNL)</td>
<td>S. Raychaudhuri (Tata)</td>
</tr>
<tr>
<td>F. Kosac (Uludag)</td>
<td>L. Rinolfi (CERN)</td>
</tr>
<tr>
<td>A. Klic (Uludag)</td>
<td>R. Rohini (Tata India)</td>
</tr>
<tr>
<td>K. Kimura (Tokyo I.Tech.)</td>
<td>J. Rojo (Milano)</td>
</tr>
<tr>
<td>M. Klein (Liverpool)</td>
<td>S. Russenschuck (CERN)</td>
</tr>
<tr>
<td>U. Klein (Liverpool)</td>
<td>C. A. Salgado (St. de Compostela)</td>
</tr>
<tr>
<td>T. Kluge (Hamburg)</td>
<td>K. Sampai (Tokyo I. Tech)</td>
</tr>
<tr>
<td>G. Kramer (Hamburg)</td>
<td>E. Sauvan (Lyon)</td>
</tr>
<tr>
<td>M. Korostelev (Cockcroft)</td>
<td>M. Sahin (Ankara)</td>
</tr>
<tr>
<td>A. Kosmicki (CERN)</td>
<td>A. A. Skrinsky (Novosibirsk)</td>
</tr>
<tr>
<td>P. Kostka (DESY)</td>
<td>U. Schneekloth (DESY)</td>
</tr>
<tr>
<td>H. Kowalski (DESY)</td>
<td>A.N. Skrinsky (Novosibirsk)</td>
</tr>
<tr>
<td>D. Kuchler (CERN)</td>
<td>T. Schoerner Sadenius (DESY)</td>
</tr>
<tr>
<td>M. Kuze (Tokyo I.Tech.)</td>
<td>D. Schulte (CERN)</td>
</tr>
<tr>
<td>M. Kuze (Tokyo I.Tech.)</td>
<td>N. Soumitra (Torino)</td>
</tr>
<tr>
<td>H. Spiesberger (Mainz)</td>
<td>A.M. Stasto (Penn State)</td>
</tr>
<tr>
<td>M. Strikman (Penn State)</td>
<td>M. Sullivan (SLAC)</td>
</tr>
<tr>
<td>B. Surrow (MIT)</td>
<td>S. Sultansoy (Ankara)</td>
</tr>
<tr>
<td>Y.P. Sun (SLAC)</td>
<td>W. Smith (Madison)</td>
</tr>
<tr>
<td>I. Tapan (Uludag)</td>
<td>P. Taels (Antwerp)</td>
</tr>
<tr>
<td>E. Tassi (Calabria)</td>
<td>H. Ten Kate (CERN)</td>
</tr>
<tr>
<td>J. Terron (Madrid)</td>
<td>J. Terron (Madrid)</td>
</tr>
<tr>
<td>H. Thiesen (CERN)</td>
<td>H. Thiesen (CERN)</td>
</tr>
<tr>
<td>K. Tuukkanen (St. de Compostela)</td>
<td>J. Tuckmantel (CERN)</td>
</tr>
<tr>
<td>S. Turkoz (Ankara)</td>
<td>S. Turkoz (Ankara)</td>
</tr>
<tr>
<td>K. Tywoniuk (Lund)</td>
<td>K. Tywoniuk (Lund)</td>
</tr>
<tr>
<td>G. Unel (CERN)</td>
<td>G. Unel (CERN)</td>
</tr>
<tr>
<td>J. Urakawa (KEK)</td>
<td>P. Van Mechelen (Antwerp)</td>
</tr>
<tr>
<td>A. Variola (SACLAY)</td>
<td>A. Variola (SACLAY)</td>
</tr>
<tr>
<td>R. Veness (CERN)</td>
<td>R. Veness (CERN)</td>
</tr>
<tr>
<td>A. Vivoli (CERN)</td>
<td>P. Vobly (BINP)</td>
</tr>
<tr>
<td>P. Vobly (BINP)</td>
<td>R. Wallny (ETHZ)</td>
</tr>
<tr>
<td>R. Tomas Garcia (CERN)</td>
<td>G. Watt (CERN)</td>
</tr>
<tr>
<td>D. Tommasini (CERN)</td>
<td>G. Weiglein (Hamburg)</td>
</tr>
<tr>
<td>N. Tsoupas (BNL)</td>
<td>C. Weiss (JLab)</td>
</tr>
<tr>
<td>J. Tuckmantel (CERN)</td>
<td>F. Willeke (BNL)</td>
</tr>
<tr>
<td>S. Turkoz (Ankara)</td>
<td>V. Yakimenko (BNL)</td>
</tr>
<tr>
<td>K. Tywoniuk (Lund)</td>
<td>A.F. Zarnecki (Warsaw)</td>
</tr>
<tr>
<td>G. Unel (CERN)</td>
<td>F. Zimmermann (CERN)</td>
</tr>
<tr>
<td>J. Urakawa (KEK)</td>
<td>F. Zomer (Orsay LAL)</td>
</tr>
<tr>
<td>P. Van Mechelen (Antwerp)</td>
<td>A. Varola (SACLAY)</td>
</tr>
<tr>
<td>A. Variola (SACLAY)</td>
<td>R. Veness (CERN)</td>
</tr>
<tr>
<td>R. Veness (CERN)</td>
<td>A. Vivoli (CERN)</td>
</tr>
<tr>
<td>P. Vobly (BINP)</td>
<td>R. Wallny (ETHZ)</td>
</tr>
<tr>
<td>R. Wallny (ETHZ)</td>
<td>G. Watt (CERN)</td>
</tr>
<tr>
<td>G. Weiglein (Hamburg)</td>
<td>C. Weiss (JLab)</td>
</tr>
<tr>
<td>F. Willeke (BNL)</td>
<td>V. Yakimenko (BNL)</td>
</tr>
<tr>
<td>A. F. Zarnecki (Warsaw)</td>
<td>A. F. Zarnecki (Warsaw)</td>
</tr>
<tr>
<td>F. Zimmermann (CERN)</td>
<td>F. Zimmermann (CERN)</td>
</tr>
<tr>
<td>F. Zomer (Orsay LAL)</td>
<td>F. Zomer (Orsay LAL)</td>
</tr>
</tbody>
</table>

No one could work full time on LHeC
LHeC Organisation

Scientific Advisory Committee
Guido Altarelli (Roma)
Sergio Bertolucci (CERN)
Stan Brodsky (SLAC)
Allen Caldwell (MPI Munich) - Chair
Swapan Chattopadhyay (Cockcroft Institute)
John Dainton (Liverpool)
John Ellis (CERN)
Jos Engelen (NWO)
Joel Feltesse (Saclay)
Roland Garoby (CERN)
Rolf Heuer (CERN)
Roland Horisberger (PSI)
Young-Kee Kim (Fermilab)
Aharon Levy (Tel Aviv)
Lev Lipatov (St. Petersburg)
Karlheinz Meier (Heidelberg)
Richard Milner (MIT)
Joachim Mnich (DESY)
Steve Myers (CERN)
Guenter Rosner (Glasgow)
Alexander N. Skrinsky (INP Novosibirsk)
Anthony Thomas (JLab)
Steve Vigdor (Brookhaven)
Ferdinand Willeke (Brookhaven)
Frank Wilczek (MIT)

Steering Committee
Oliver Bruening (CERN)
John Dainton (Liverpool)
Albert De Roeck (CERN)
Stefano Forte (Milano)
Max Klein (Liverpool) - Chair
Paul Laycock (Liverpool)
Paul Newman (Birmingham)
Emmanuelle Perez (CERN)
Wesley Smith (Wisconsin)
Bernd Surrow (MIT)
Katsuo Tokushuku (KEK)
Urs Wiedemann (CERN)
Frank Zimmermann (CERN)

Working Group Convenors
Accelerator Design
Oliver Bruening (CERN)
John Dainton (Liverpool)

Interaction Region
Bernhard Holzer (CERN)
Uwe Schneekloth (DESY)
Pierre van Mechelen (Antwerp)

Detector Design
Peter Kostka (DESY)
Alessandro Polini (Bologna)
Rainer Walhny (Zurich)

New Physics at Large Scales
Georges Azuelos (Montreal)
Emmanuelle Perez (CERN)
Georg Weiglein (Hamburg)

Precision QCD and Electroweak
Olaf Behnke (DESY)
Paolo Gambino (Torino)
Thomas Gehrmann (Zurich)
Claire Gwenlan (Oxford)

Physics at High Parton Densities
Néstor Armesto (Santiago de Compostela)
Brian A. Cole (Columbia)
Paul R. Newman (Birmingham)
Anna M. Stasto (PennState)

CERN Referees
Ring Ring Design
Kurt Huebner (CERN)
Alexander N. Skrinsky (INP Novosibirsk)
Ferdinand Willeke (BNL)
Linac Ring Design
Reinhard Brinkmann (DESY)
Andy Wolski (Cockcroft)
Kaoru Yokoya (KEK)
Energy Recovery
Georg Hofstaetter (Cornell)
Ilan Ben Zvi (BNL)
Magnets
Neil Marks (Cockcroft)
Martin Wilson (CERN)
Interaction Region
Daniel Pitzl (DESY)
Mike Sullivan (SLAC)
Detector Design
Philippe Bloch (CERN)
Roland Horisberger (PSI)
Installation and Infrastructure
Sylvain Weisz (CERN)
New Physics at Large Scales
Cristinel Diaconu (IN2P3 Marseille)
Gian Giudice (CERN)
Michelangelo Mangano (CERN)
Precision QCD and Electroweak
Guido Altarelli (Roma)
Vladimir Chekelian (MPI Munich)
Alan Martin (Durham)
Physics at High Parton Densities
Alfred Mueller (Columbia)
Raju Venugopalan (BNL)
Michele Arneodo (INFN Torino)
Accelerator: Participating Institutes
HERA – an unfinished programme

<table>
<thead>
<tr>
<th>Topic</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low x: DGLAP seems to hold though ln1/x is large Gluon Saturation not proven</td>
<td></td>
</tr>
<tr>
<td>High x: would have required much higher luminosity [u/d ?, xg ?]</td>
<td></td>
</tr>
<tr>
<td>Strange quark density ?</td>
<td></td>
</tr>
<tr>
<td>Neutron structure not explored</td>
<td></td>
</tr>
<tr>
<td>Nuclear structure not explored</td>
<td></td>
</tr>
<tr>
<td>New concepts introduced, investigation just started:</td>
<td></td>
</tr>
<tr>
<td>-parton amplitudes (GPD's, proton hologram)</td>
<td></td>
</tr>
<tr>
<td>-diffractive partons</td>
<td></td>
</tr>
<tr>
<td>-unintegrated partons</td>
<td></td>
</tr>
<tr>
<td>Partonic structure of the photon</td>
<td></td>
</tr>
<tr>
<td>Instantons not observed</td>
<td></td>
</tr>
<tr>
<td>Odderons not found</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Fermions still pointlike</td>
<td></td>
</tr>
<tr>
<td>Lepton-quark states (as in RPV SUSY) not observed</td>
<td></td>
</tr>
</tbody>
</table>
High Precision Gluon Measurements

NLO QCD “Fits” of LHeC simulated data

HERA + LHeC
$F_2 + F_L$
$Q^2 = 2 \text{ GeV}^2$
Heavy Flavour @ LHeC

Events per 10 fb−1 Lumi

- charm γp: 10^{10}
- charm DIS: 10^8
- beauty γp: 4×10^6
- beauty DIS: 4×10^5
- CC e+p: 10^5
- sW → c: 10^3
- sW → c\bar{c}: Obtained with PYTHIA, RAPGAP and LEPTO
- tt γp DIS: 10^{-3}

LHeC is a flavour factory
Inclusive diffraction: new possibilities

- Studies with 1 degree acceptance,
- Constraints on diffractive-PDFs
- Factorization (tests) in much bigger kinematics range.
- Diffraction is much more sensitive to the semi-hard regime.
- Enhanced sensitivity to nonlinear/saturation effects.

Figure 6.34: Diffractive DIS kinematic ranges in Q^2 and β of HERA and of the LHeC for different electron energies $E_e = 20, 50, 150$ GeV at $x_{F} = 0.01$ (left plot), and $x_{F} = 0.0001$ (right plot). In both cases, 1° acceptance is assumed for the scattered electron and the typical experimental restriction $y > 0.01$ is imposed. No rapidity gap restrictions are applied.
The LHeC will dramatically expand the coverage of nuclear DIS measurements.

- Nuclear PDF’s

Access to saturation scales $Q_s^2 \sim 5 \text{ GeV}^2$ – at $b = 0$.

DIS 2011, Brian A. Cole, Columbia Univ.
Figure 6.18: Predictions from different models for the nuclear modification factor, Eq. (6.5) for Pb with respect to the proton, for $F_2(x, Q^2 = 5 \text{ GeV}^2)$ (plot on the left) and $F_L(x, Q^2 = 5 \text{ GeV}^2)$ (plot on the right) versus x, together with the corresponding LHeC pseudodata. Dotted lines correspond to the nuclear PDF set EPS09 [153], dashed ones to nDS [405], solid ones to HKN07 [406], dashed-dotted ones to FGS10 [407] and dashed-dotted-dotted ones to AKST [302]. The band corresponds to the uncertainty in the Hessian analysis in EPS09 [153].
Design Parameters

Draft CDR - 5th August 2011

<table>
<thead>
<tr>
<th>electron beam</th>
<th>RR</th>
<th>LR</th>
<th>LR*pulsed</th>
</tr>
</thead>
<tbody>
<tr>
<td>e- energy at IP [GeV]</td>
<td>60</td>
<td>60</td>
<td>140</td>
</tr>
<tr>
<td>luminosity [1032cm-2s-1]</td>
<td>17</td>
<td>10</td>
<td>0.44</td>
</tr>
<tr>
<td>polarization [%]</td>
<td>40</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>bunch population [109]</td>
<td>26</td>
<td>2.0</td>
<td>1.6</td>
</tr>
<tr>
<td>transv. emit. $\gamma\epsilon_{x,y}$ [mm]</td>
<td>0.58, 0.29</td>
<td>0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>rms IP beam size $\sigma_{x,y}$ [\mu m]</td>
<td>30, 16</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>e- IP beta funct. $\beta_{x,y}^\ast$ [m]</td>
<td>0.18, 0.10</td>
<td>0.12</td>
<td>0.14</td>
</tr>
<tr>
<td>bunch interval [ns]</td>
<td>25</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>e- bunch length [mm]</td>
<td>10</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>full crossing angle [mrad]</td>
<td>0.93</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>geometric reduction H_{hg}</td>
<td>0.77</td>
<td>0.91</td>
<td>0.94</td>
</tr>
<tr>
<td>repetition rate [Hz]</td>
<td>N/A</td>
<td>N/A</td>
<td>10</td>
</tr>
<tr>
<td>beam pulse length [ms]</td>
<td>N/A</td>
<td>N/A</td>
<td>5</td>
</tr>
<tr>
<td>ER efficiency</td>
<td></td>
<td>N/A</td>
<td>94%</td>
</tr>
<tr>
<td>average current [mA]</td>
<td>131</td>
<td>6.6</td>
<td>5.4</td>
</tr>
<tr>
<td>tot. wall plug power [MW]</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>proton beam</th>
<th>RR</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>bunch population* [1011]</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>transv. emit. $\gamma\epsilon_{x,y}$ [mm]</td>
<td>3.75</td>
<td>3.75</td>
</tr>
<tr>
<td>spot size $\sigma_{x,y}$ [\mu m]</td>
<td>30, 16</td>
<td>7</td>
</tr>
<tr>
<td>$\beta_{x,y}^\ast$ [m]</td>
<td>0.18, 0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>bunch spacing [ns]</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

*)“ultimate p beam” - 1.7 probably conservative
Design also for deuterons (new) and lead (exists)

* but high energy ERL not impossible; RR=Ring-Ring, LR=Linac-Ring
Summary of Machine Parameters

Parameters of the RR and RL configurations.

<table>
<thead>
<tr>
<th>electron beam</th>
<th>Ring</th>
<th>Linac</th>
</tr>
</thead>
<tbody>
<tr>
<td>beam energy E_e [GeV]</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>$e^- (e^+)$ per bunch $N_e [10^9]$</td>
<td>20 (20)</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>$e^- (e^+)$ polarisation [%]</td>
<td>40 (40)</td>
<td>90 (0)</td>
</tr>
<tr>
<td>bunch length [mm]</td>
<td>10</td>
<td>0.6</td>
</tr>
<tr>
<td>tr. emittance at IP $\gamma e_{x,y}$ [mm]</td>
<td>0.58, 0.29</td>
<td>0.05</td>
</tr>
<tr>
<td>IP β function $\beta_{x,y}^*$ [m]</td>
<td>0.4, 0.2</td>
<td>0.12</td>
</tr>
<tr>
<td>beam current [mA]</td>
<td>131</td>
<td>6.6</td>
</tr>
<tr>
<td>energy recovery intensity gain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total wall plug power [MW]</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>syn rad power [kW]</td>
<td>51</td>
<td>49</td>
</tr>
<tr>
<td>critical energy [keV]</td>
<td>163</td>
<td>718</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>proton beam</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>beam energy E_p [GeV]</td>
<td>7000</td>
</tr>
<tr>
<td>protons per bunch $N_p [10^{11}]$</td>
<td>1.7</td>
</tr>
<tr>
<td>transverse emittance $\gamma e_{x,y}^p [\mu m]$</td>
<td>3.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>collider</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lum $e^- p (e^+ p) [10^{32} \text{cm}^{-2} \text{s}^{-1}]$</td>
<td>9 (9)</td>
</tr>
<tr>
<td>bunch spacing [ns]</td>
<td>25</td>
</tr>
<tr>
<td>rms beam spot size $\sigma_{x,y} [\mu m]$</td>
<td>30,16</td>
</tr>
<tr>
<td>crossing angle $\theta [\text{mrad}]$</td>
<td>1</td>
</tr>
<tr>
<td>$L e_N = A L e_A [10^{32} \text{cm}^{-2} \text{s}^{-1}]$</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Components of the electron accelerators.

<table>
<thead>
<tr>
<th>magnets</th>
<th>Ring</th>
<th>Linac</th>
</tr>
</thead>
<tbody>
<tr>
<td>beam energy [GeV]</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>number of dipoles</td>
<td>3080</td>
<td>3600</td>
</tr>
<tr>
<td>dipole field [T]</td>
<td>0.013 - 0.076</td>
<td>0.046 - 0.264</td>
</tr>
<tr>
<td>total nr. of quads</td>
<td>866</td>
<td>1588</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RF and cryogenics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>number of cavities</td>
<td>112</td>
</tr>
<tr>
<td>gradient [MV/m]</td>
<td>11.9</td>
</tr>
<tr>
<td>RF power [MW]</td>
<td>49</td>
</tr>
<tr>
<td>cavity voltage [MV]</td>
<td>5</td>
</tr>
<tr>
<td>cavity $R/Q [\Omega]$</td>
<td>114</td>
</tr>
<tr>
<td>cavity Q_0</td>
<td>-</td>
</tr>
<tr>
<td>cooling power [kW]</td>
<td>5.4@4.2 K</td>
</tr>
</tbody>
</table>

The LHeC may be realised either as a ring-ring (RR) or as a linac-ring (LR) collider.
Accelerator: Ring - Ring

Workpackages as formulated in 2008, now in the draft CDR

Baseline Parameters and Installation Scenarios
Lattice Design [Optics, Magnets, Bypasses]
IR for high Luminosity and large Acceptance
rf Design [Installation in bypasses, Crabs?]
Injector Complex [Sources, Injector]
Injection and Dump
Cryogenics – work in progress
Beam-beam effects
Impedance and Collective Effects
Vacuum and Beam Pipe
Integration into LHC
e Beam Polarization
Deuteron and Ion Beams

LHeC Ring Dipole Magnet

.12-.8T
1.3kA
0.8MW

5.3m long
(35 cm)²
slim + light(er)
3080 magnets
Prototypes:
BINP-CERN
Baseline Parameters [Designs, Real photon option, ERL]
Sources [Positrons, Polarisation]
Rf Design
Injection and Dump
Beam-beam effects
Lattice/Optics and Impedance
Vacuum, Beam Pipe
Integration and Layout
Interaction Region
Magnets
Cryogenics

Linac (racetrack) inside the LHC for access at CERN Territory
U=U(LHC)/3=9km

1056 cavities
66 cryo modules per linac
721 MHz, 19 MV/m CW
Similar to SPL, ESS, XFEL, ILC, eRHIC, Jlab
21 MW RF power
Cryo 29 MW for 37W/m heat load
Magnets in the 2 * 3 arcs:
600 - 4m long dipoles per arc
240 - 1.2m long quadrupoles per arc
Ring: Dipole + Quadrupole Magnets

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Energy</td>
<td>10-60</td>
<td>GeV</td>
</tr>
<tr>
<td>Magnetic Length</td>
<td>5.35</td>
<td>Meters</td>
</tr>
<tr>
<td>Magnetic Field</td>
<td>0.127-0.763</td>
<td>Tesla</td>
</tr>
<tr>
<td>Number of magnets</td>
<td>3080</td>
<td></td>
</tr>
<tr>
<td>Vertical aperture</td>
<td>40</td>
<td>mm</td>
</tr>
<tr>
<td>Pole width</td>
<td>150</td>
<td>mm</td>
</tr>
<tr>
<td>Number of turns</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Current @ 0.763 T</td>
<td>1300</td>
<td>Ampere</td>
</tr>
<tr>
<td>Conductor material</td>
<td>copper</td>
<td></td>
</tr>
<tr>
<td>Magnet inductance</td>
<td>0.15</td>
<td>milli-Henry</td>
</tr>
<tr>
<td>Magnet resistance</td>
<td>0.16</td>
<td>milli-Ohm</td>
</tr>
<tr>
<td>Power @ 60 GeV</td>
<td>270</td>
<td>Watt</td>
</tr>
<tr>
<td>Total power consumption @ 60 GeV</td>
<td>0.8</td>
<td>MW</td>
</tr>
<tr>
<td>Cooling</td>
<td>air or water</td>
<td>depends on tunnel ventilation</td>
</tr>
</tbody>
</table>

Table 3.2: Main parameters of bending magnets for the RR Option.

BINF & CERN prototypes

736 magnets
1.2 m long

5m long (35 cm)2
slim + light for installation
High Energy Frontier (Colliders)

• Recent Progress
 - Tevatron
 - RHIC
 - LHC

• Future Directions
 - Future Ion Colliders
 - HL-LHC
 - ILC/CLIC
 - electron-hadron colliders
 - HE-LHC
 - Neutrinos (Intensity Frontier)
 - Muon collider
Ad personam Issues (1)

• The physics output from the LHC will be decisive
• If 500GeV cm is sufficient:
 – ILC500; almost ready to go with construction (>200MW of electrical power, capital cost)
 – CLIC500; staged version, several years technical development needed (>200MW of electrical power, capital cost)
• If 1000GeV is needed and sufficient
 – ILC1000; at the upper energy limit of this technology (~400MW Electrical power, serious issue, capital cost, 50km)
 – CLIC1000; staged version, several years technical development needed (~400MW Electrical power is a serious issue)
• If 3000GeV is needed and sufficient
 – CLIC3000; maximum energy imaginable, still some major feasibility issues (560MW of electrical power would make this highly undesirable for the ecologists + operational costs)
• If even higher energies are needed
 – HE-LHC; aggressive R&D for high field sc magnets needed, SPS upgrade, injection/extraction systems, synchrotron radiation...
 – Muon collider; many as yet unsolved technical issues (list too long to record), but very interesting accelerator physics... very long term
Ad personam Issues (1)

• The physics output from the LHC will be decisive
 • If 500GeV cm is sufficient:
 – ILC500; almost ready to go with construction (>200MW of electrical power, capital cost)
 – CLIC500; staged version, several years technical development needed (>200MW of electrical power, capital cost)
 • If 1000GeV is needed and sufficient
 – ILC1000; at the upper energy limit of this technology (capital cost, 50km)
 – CLIC1000; staged version, several years technical development needed (power is a serious issue)
 • If 3000GeV is needed and sufficient
 – CLIC3000; maximum energy imaginable, still some major feasibility issues (560MW of electrical power would make this highly undesirable for the ecologists + operational costs)
 • If even higher energies are needed
 – HE-LHC; aggressive R&D for high field sc magnets needed, SPS upgrade, injection/extraction systems, synchrotron radiation...
 – Muon collider; many as yet unsolved technical issues (list too long to record), but very interesting accelerator physics… very long term

Aggressive R&D needed to increase the efficiency wall-plug to beam
Summary (2)

• If e-p is interesting as a **complimentary** project:
 • LHeC (RR): certainly technically do-able. Integration presents major challenges, impact on the LHC operation is a major concern. By-passes are not trivial
 • LHeC (LR): luminosity \((10^{33})\) may be difficult to achieve, ERL a major challenge but is very interesting due to synergy with many other projects.

All these projects need continuing accelerator R&D so that the right decision can be made when the time comes to identify the next energy frontier accelerator (collider). We need to keep our choices open.
NuPECC – Roadmap 5/2010: New Large-Scale Facilities

<table>
<thead>
<tr>
<th>Facility</th>
<th>Phase</th>
<th>2010</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PANDA</td>
<td>R&D</td>
<td>Construction</td>
<td>Commissioning</td>
<td>Exploitation</td>
<td></td>
</tr>
<tr>
<td>CBM</td>
<td>R&D</td>
<td>Construction</td>
<td>Commissioning</td>
<td>Exploitation</td>
<td>SIS300</td>
</tr>
<tr>
<td>NuSTAR</td>
<td>R&D</td>
<td>Construction</td>
<td>Commissioning</td>
<td>Exploitation</td>
<td>NESR FLAIR</td>
</tr>
<tr>
<td>PAX/ENC</td>
<td>Design Study</td>
<td>R&D</td>
<td>Tests</td>
<td>Construction/Commissioning</td>
<td>Collider</td>
</tr>
<tr>
<td>SPIRAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>R&D</td>
<td>Constr./Commission.</td>
<td>Exploitation</td>
<td>150 MeV/u Post-accelerator</td>
<td></td>
</tr>
<tr>
<td>HIE-ISOLODE</td>
<td>Constr./Commission.</td>
<td>Exploitation</td>
<td></td>
<td></td>
<td>Injector Upgrade</td>
</tr>
<tr>
<td>SPES</td>
<td>Constr./Commission.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EURISOL</td>
<td>Design Study</td>
<td>R&D</td>
<td>Preparatory Phase / Site Decision</td>
<td>Engineering Study</td>
<td>Construction</td>
</tr>
<tr>
<td>LHeC</td>
<td>Design Study</td>
<td>R&D</td>
<td>Engineering Study</td>
<td>Construction/Commissioning</td>
<td></td>
</tr>
</tbody>
</table>