Future High Energy Electron Proton Scattering: The LHeC Project

Paul Newman
Birmingham University, (for LHeC study group)

Cambridge Seminar
30 October 2012

A second generation lepton-hadron collider in the 2020s, based on the high luminosity phase of the LHC

http://cern.ch/lhec
Material from recently published Conceptual Design Report

630 pages, summarising a 5 year workshop commissioned by CERN, ECFA and NuPECC

~200 participants from 69 institutes

LHeC is the latest & most promising idea to take ep physics to the TeV centre-of-mass scale at high luminosity

Contents

- A brief history of ep Physics
- How to build an ep Collider based on the LHC
- Detector considerations
- Physics motivation
 - Proton structure / Impact on the LHC
 - QCD at high parton densities
 - Electron - ion collisions
 - BSM physics
- Timeline and outlook
Electron Scattering Experiments

“It would be of great scientific interest if it were possible to have a supply of electrons ... of which the individual energy of motion is greater even than that of the alpha particle.”
[Ernest Rutherford, Royal Society, London, (as PRS) 30 Nov 1927]

1950s
Hoffstadter

First observation of finite proton size using 2 MeV e beam

Fig. 2. This figure shows a schematic diagram of a modern electron-scattering experimental area. The track on which the spectrometers roll has an approximate radius of 13.5 feet.
Proposal:
“A general survey of the basic cross sections which will be useful for future proposals”
First Observation Of Proton Structure

OBSERVED BEHAVIOR OF HIGHLY INELASTIC ELECTRON-PROTON SCATTERING

M. Breidenbach, J. I. Friedman, and H. W. Kendall
Department of Physics and Laboratory for Nuclear Science,*
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

and

Stanford Linear Accelerator Center,† Stanford, California 94305
(Received 22 August 1969)

... and so on ...
Basic Deep Inelastic Scattering Processes

\[Q^2 = -q^2 \] : resolving power of interaction

\[x = \frac{Q^2}{2q.p} \] : fraction of struck quark / proton momentum
DESY, Hamburg

HERA (1992-2007)

... the only ever collider of electron beams with proton beams

Equivalent to a 50 TeV beam on a fixed target proton
~2500 times more than SLAC!

Around 500 pb\(^{-1}\) per experiment
Proton “Structure”?

Proton constituents ...
2 up and 1 down valence quarks ...
... and some gluons ...
... and some sea quarks ...
... and lots more gluons and sea quarks ...
→ strong interactions induce rich and complex ‘structure’ of high energy proton interactions!

Scattering electrons from protons at $\sqrt{s} > 300\text{GeV}$ at HERA established detailed proton structure & provided a testing ground for QCD over a huge kinematic range ...

... parton density functions
HERA’s greatest legacy

Proton parton densities in x range well matched to LHC rapidity plateau

Some limitations:
- Insufficient lumi for high x precision
- Lack of Q^2 lever-arm for low x gluon
- Assumptions on quark flavour decomposition
- No deuterons ...
- u and d not separated
- No heavy ions

- **H1/ZEUS publications still coming**
- Further progress requires higher energy and luminosity ...

H1 and ZEUS HERA I+II PDF Fit

$Q^2 = 10 \text{ GeV}^2$

- HERAPDF1.5 NNLO (prel.)
- exp. uncert.
- model uncert.
- parametrization uncert.

HERAPDF Structure Function Working Group March 2011
Currently Approved Future of High Energy DIS
How Could ep be Done using LHC?

... whilst allowing simultaneous ep and pp running ...

- First considered (as LEPxLHC) in 1984 ECFA workshop
- Main advantages: high peak lumi, tunnelling (mostly) exists
- Main difficulties: building round existing LHC, e beam energy and lifetime limited by synchrotron radiation

- Previously considered as `QCD explorer’ (also THERA)
- Main advantages: low interference with LHC, high and stageable E_e, high lepton polarisation, LC relation?
- Main difficulties: obtaining high positron intensities, no previous experience exists
Baseline Design (Electron “Linac”)

Design constraint: power < 100 MW → $E_e = 60$ GeV @ 10^{33} cm$^{-2}$ s$^{-1}$

- Two 10 GeV linacs,
- 3 returns, 20 MV/m
- Energy recovery in same structures
 [CERN plans energy recovery prototype]

- ep Lumi ~ 10^{33} cm$^{-2}$ s$^{-1}$ corresponds to ~10 fb$^{-1}$ per year (~ 100 fb$^{-1}$ total)
- eD and eA collisions have always been integral to programme
- e-nucleon Lumi estimates ~ 10^{31} (10^{32}) cm$^{-2}$ s$^{-1}$ for eD (ePb)

Alternative designs based on electron ring and on higher energy, lower luminosity linac also exist
Civil Engineering Studies for Major Projects after LHC
Design Parameter Summary

RR = Ring - Ring
LR = Linac - Ring

<table>
<thead>
<tr>
<th>electron beam</th>
<th>RR</th>
<th>LR</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>e- energy at IP[GeV]</td>
<td>60</td>
<td>60</td>
<td>140</td>
</tr>
<tr>
<td>luminosity $[10^{32} \text{ cm}^{-2}\text{s}^{-1}]$</td>
<td>17</td>
<td>10</td>
<td>0.44</td>
</tr>
<tr>
<td>polarization [%]</td>
<td>40</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>bunch population $[10^9]$</td>
<td>26</td>
<td>2.0</td>
<td>1.6</td>
</tr>
<tr>
<td>e- bunch length [mm]</td>
<td>10</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>bunch interval [ns]</td>
<td>25</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>transv. emit. $\gamma\varepsilon_{x,y}$ [mm]</td>
<td>0.58, 0.29</td>
<td>0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>rms IP beam size $\sigma_{x,y}$ [μm]</td>
<td>30, 16</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>e- IP beta funct. $\beta^*_{x,y}$ [m]</td>
<td>0.18, 0.10</td>
<td>0.12</td>
<td>0.14</td>
</tr>
<tr>
<td>full crossing angle [mrad]</td>
<td>0.93</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>geometric reduction H_{hg}</td>
<td>0.77</td>
<td>0.91</td>
<td>0.94</td>
</tr>
<tr>
<td>repetition rate [Hz]</td>
<td>N/A</td>
<td>N/A</td>
<td>10</td>
</tr>
<tr>
<td>beam pulse length [ms]</td>
<td>N/A</td>
<td>N/A</td>
<td>5</td>
</tr>
<tr>
<td>ER efficiency</td>
<td>N/A</td>
<td>94%</td>
<td>N/A</td>
</tr>
<tr>
<td>average current [mA]</td>
<td>131</td>
<td>6.6</td>
<td>5.4</td>
</tr>
<tr>
<td>tot. wall plug power [MW]</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>proton beam</th>
<th>RR</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>bunch pop. $[10^{11}]$</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>tr.emit. $\gamma\varepsilon_{x,y}$ [μm]</td>
<td>3.75</td>
<td>3.75</td>
</tr>
<tr>
<td>spot size $\sigma_{x,y}$ [μm]</td>
<td>30, 16</td>
<td>7</td>
</tr>
<tr>
<td>$\beta^*_{x,y}$ [m]</td>
<td>1.8, 0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>bunch spacing [ns]</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

Include deuterons (new) and lead (exists)
10 fb$^{-1}$ per year looks possible
... ~ 100 fb$^{-1}$ total
Access to $Q^2=1$ GeV2 in ep mode for all $x > 5 \times 10^{-7}$ requires scattered electron acceptance to 179°.

Similarly, need 1° acceptance in outgoing proton direction to contain hadrons at high x (essential for good kinematic reconstruction).
Forward/backward asymmetry in energy deposited and thus in geometry and technology

Present dimensions: $L \times D = 14 \times 9 \, \text{m}^2$ [CMS $21 \times 15 \, \text{m}^2$, ATLAS $45 \times 25 \, \text{m}^2$]

Taggers at -62m (e),100m (γ LR), -22.4m (γ RR), +100m (n), +420m (p)
• Full angular coverage, long tracking region $\Rightarrow 1^\circ$ acceptance
• Several technologies under discussion
Liquid Argon EM Calorimeter [accordion geometry, inside coil]
Barrel: Pb, 20 X_0, 11m3
FEC: Si -W, 30 X_0
BEC: Si -Pb, 25 X

Hadronic Tile Calorimeter [modular, outside coil: flux return]
A GEANT4 Simulated High x Event
In the absence of a detailed simulation set-up, simulated `pseudo-data' produced with reasonable assumptions on systematics (typically 2x better than H1 and ZEUS at HERA).

<table>
<thead>
<tr>
<th></th>
<th>LHeC</th>
<th>HERA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumi (\text{cm}^{-2}\text{s}^{-1})</td>
<td>(10^{33})</td>
<td>(1-5\times10^{31})</td>
</tr>
<tr>
<td>Acceptance [°]</td>
<td>1-179</td>
<td>7-177</td>
</tr>
<tr>
<td>Tracking to</td>
<td>0.1 mrad</td>
<td>0.2-1 mrad</td>
</tr>
<tr>
<td>EM calorimetry to</td>
<td>0.1%</td>
<td>0.2-0.5%</td>
</tr>
<tr>
<td>Hadronic calorimetry</td>
<td>0.5%</td>
<td>1-2%</td>
</tr>
<tr>
<td>Luminosity</td>
<td>0.5%</td>
<td>1%</td>
</tr>
</tbody>
</table>
Measuring α_s

- Least constrained fundamental coupling by far (known to ~1%)
- Do coupling constants unify (with a little help from SUSY)?
- (Why) is DIS result historically low?

- Simulated LHeC precision from fitting inclusive data

→ per-mille (experimental)
→ also requires improved theory
PDF Constraints at LHeC

Full simulation of inclusive NC and CC DIS data, including systematics \rightarrow NLO DGLAP fit using HERA technology...

... impact at low x (kinematic range) and high x (luminosity)

... precise light quark vector, axial couplings, weak mixing angle

... full flavour decomposition
Cross Sections and Rates for Heavy Flavours

LHeC total cross sections (MC simulated)

<table>
<thead>
<tr>
<th>Process</th>
<th>HERA</th>
<th>Charm [10^{10} / 10 fb^{-1}]</th>
<th>Beauty [10^{8} / 10 fb^{-1}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>charm γp</td>
<td>[7.5 × 10^{20}]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>charm DIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>beauty γp</td>
<td>[10^{3}]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>beauty DIS</td>
<td>[10^{4}]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC e+p</td>
<td>[10^{2}]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC e+p DIS</td>
<td>[10]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sW → c</td>
<td>[4.10^{5}]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sW → cbar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bW → t</td>
<td>[10^{5}]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ttbar</td>
<td>[10^{3}]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c.f. luminosity of ~10 fb^{-1} per year ...
Flavour Decomposition

Precision c, b measurements (modern Si trackers, beam spot 15 * 35 \(\mu \text{m}^2 \), increased HF rates at higher scales).

Systematics at 10% level

\[\rightarrow \text{beauty is a low } x \text{ observable!} \]

\[\rightarrow s, \overline{s} \text{ from charged current} \]

(Assumes 1 fb\(^{-1}\) and
- 50% beauty, 10% charm efficiency
- 1% uds \(\rightarrow c \) mistag probability.
- 10% c \(\rightarrow b \) mistag)
Current uncertainties due to PDFs for particles on LHC rapidity plateau (NLO):
- Most precise for quark initiated processes around EW scale
- Gluon initiated processes less well known
- All uncertainties explode for largest masses
Do we need to Care?

Ancient history (HERA, Tevatron)

- Apparent excess in large E_T jets at Tevatron turned out to be explained by too low high x gluon density in PDF sets

- Confirmation of (non-resonant) new physics near LHC kinematic limit relies on breakdown of factorisation between ep and pp

Searches near LHC kinematic boundary may ultimately be limited by knowledge of PDFs (especially gluon as $x \to 1$)
Executive summary: nothing on scale of 1 TeV ... need to push sensitivity to higher masses (also non-SUSY searches)
e.g. High Mass Gluino Production

- Signature is excess @ large invariant mass
- Expected SM background (e.g. $gg \rightarrow gg$) poorly known for $s\text{-}hat > 1$ TeV.

- Both signal & background uncertainties driven by error on gluon density ... Essentially unknown for masses much beyond 2 TeV.

- Similar conclusions for other non-resonant LHC signals involving high x partons (e.g. contact interactions signal in Drell-Yan)
PDF Uncertainties for Higgs Physics

Theory Cross Section Uncertainties
(125 GeV Higgs J Campbell, ICHEP’12)

<table>
<thead>
<tr>
<th>Process</th>
<th>Cross Section (pb)</th>
<th>Uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$gg \rightarrow H$</td>
<td>19.5</td>
<td>14.7</td>
</tr>
<tr>
<td>VBF</td>
<td>1.56</td>
<td>2.9</td>
</tr>
<tr>
<td>WH</td>
<td>0.70</td>
<td>3.9</td>
</tr>
<tr>
<td>ZH</td>
<td>0.39</td>
<td>5.1</td>
</tr>
<tr>
<td>ttH</td>
<td>0.13</td>
<td>14.4</td>
</tr>
</tbody>
</table>

Projected Experimental Uncertainties

$\sqrt{s} = 14$ TeV: $L dt = 300$ fb$^{-1}$; $L dt = 3000$ fb$^{-1}$

Similarly fermionic modes ($bb\bar{b}$, $cc\bar{c}$)

... tests of Standard Model in Higgs sector may become limited by knowledge of PDFs in HL-LHC era
ep Higgs Production at LHeC

Dominant charged current process probes product of $WW \rightarrow H$ and $H \rightarrow bb\bar{b}$ couplings

Clean separation from (smaller cross section) neutral current process $ZZ \rightarrow H$

Sensitive to anomalous couplings and (via azimuthal degree of freedom) anomalous CP structure
A First Higgs Study

2 b-tags in a simulated `generic LHC detector'
Backgrounds (b & light jets in NC, CC, Z→ bbbar single top) suppressed with cuts on jet multiplicity, b-tags, event kinematics, missing p_t

<table>
<thead>
<tr>
<th></th>
<th>$E_e = 150$ GeV (10 fb$^{-1}$)</th>
<th>$E_e = 60$ GeV (100 fb$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H → bb$ signal</td>
<td>84.6</td>
<td>248</td>
</tr>
<tr>
<td>S/N</td>
<td>1.79</td>
<td>1.05</td>
</tr>
<tr>
<td>S/\sqrt{N}</td>
<td>12.3</td>
<td>16.1</td>
</tr>
</tbody>
</table>

$m_H = 120$ GeV, LHeC with 10fb$^{-1}$

90% lepton polarisation enhances signal by factor 1.9
→ ~500 events ... $H→bbbar$ coupling to a few %.
Direct Sensitivity to New Physics

• The (pp) LHC has much better discovery potential than LHeC (unless E_e increases to ~ 500 GeV and Lumi to 10^{34} cm$^{-2}$ s$^{-1}$)

 e.g. Expected quark compositeness limits below 10^{-19} m at LHeC

 ... big improvement on HERA, but already beaten by LHC

• LHeC is competitive with LHC in cases where initial state lepton is an advantage and offers cleaner final states
Determining Leptoquark Quantum Numbers

Mass range of LQ sensitivity to ~ 2 TeV ... similar to LHC
Single production gives access to LQ quantum numbers:
- fermion number (below)
- spin (decay angular distributions)
- chiral couplings (beam lepton polarisation asymmetry)
A fundamental QCD problem is looming ... rise of low x parton densities cannot continue

... High energy unitarity issues reminiscent of longitudinal WW scattering in electroweak physics:
- Somewhere & somehow, the low x growth of cross sections must be tamed to satisfy unitarity … non-linear effects
- Parton level language \rightarrow recombination $gg \rightarrow g$?

... new high density, small coupling parton regime of non-linear parton evolution dynamics (e.g. Colour Glass Condensate)? ...
... gluon dynamics \rightarrow confinement and hadronic mass generation
Strategy for making the target blacker

LHeC delivers a 2-pronged approach:

Enhance target ‘blackness’ by:
1) Probing lower x at fixed Q^2 in ep
 [evolution of a single source]
2) Increasing target matter in eA
 [overlapping many sources at fixed kinematics ... density $\sim A^{1/3} \sim 6$ for Pb ... worth 2 orders of magnitude in x]
Establishing and Characterising Saturation

With 1 fb\(^{-1}\) (1 month at 10\(^{33}\) cm\(^{-2}\) s\(^{-1}\)), \(F_2\) stat. < 0.1%, syst, 1-3% \(F_L\) measurement to 8% with 1 year of varying \(E_e\) or \(E_p\)

• LHeC can distinguish between different QCD-based models for the onset of non-linear dynamics
• Unambiguous observation of saturation will be based on tension between different observables e.g. \(F_2\) v \(F_L\) in \(ep\) or \(F_2\) in \(ep\) v \(eA\)
Exclusive / Diffractive Channels and Saturation

1) [Low-Nussinov] interpretation as 2 gluon exchange enhances sensitivity to low x gluon

2) Additional variable t gives access to impact parameter (b) dependent amplitudes

→ Large t (small b) probes densest packed part of proton?
Simulation of J/ψ Photoproduction

e.g. “b-Sat” Dipole model
- “eikonalised”: with impact-parameter dependent saturation
- “1 Pomeron”: non-saturating

- Significant non-linear effects expected in LHeC kinematic range.

- Data shown are extrapolations of HERA power law fit for $E_e = 150$ GeV...
 \Rightarrow Satn smoking gun?
What is Initial State of LHC AA Collisions?

• Very limited x, Q^2 and A range for F_2^A so far (fixed target experiments covered x >~ 10^-2)

• LHeC extends kinematic range by 3-4 orders of magnitude with very large A

[and eA potentially provides control for AA QGP signatures]
Current Knowledge: Nuclear Parton Densities

Nuclear parton densities don’t scale with A (Fermi motion, shadowing corrections ...)

\[R_i = \text{Nuclear PDF } i / (A^*\text{proton PDF } i) \]

Early LHC data (e.g. inclusive \(J/\Psi\)) suggest low \(x\) assumptions inadequate
Impact of eA F₂ LHeC data

- Simulated LHeC ePb F₂ measurement has huge impact on uncertainties
- Most striking effect for sea & gluons
- High x gluon uncertainty still large

[Example pseudo-data from single Q² Value]

[Effects on EPS09 nPDF fit]
Current mandate from CERN is to aim for TDR by ~ 2015.
... requires detailed further study and prototyping of accelerator components (including CERN ERL LHeC test facility), but also an experimental collaboration to develop the detector concept.
Summary

- LHC is a totally new world of energy and luminosity, already making discoveries. LHeC proposal aims to exploit it for lepton-hadron scattering ...
 ... ep complementing LHC and next generation ee facility for full Terascale exploration

- ECFA/CERN/NuPECC workshop gathered many accelerator, theory & experimental colleagues

→ Conceptual Design Report published. Moving to TDR phase
→ Awaiting outcome of European strategy exercise
→ Build collaboration for detector development

[More at http://cern.ch/lhec]
... with thanks to many colleagues working on LHeC ...

http://cern.ch/lhec

LHeC Study Group

J. Abelleira Fernandez10,15, C. Adolphsen39, S. Alekhin40,11, A.N. Akai91, H. Aksakal30, P. Allport17, J.L. Albacete37, V. Andreev25, R.B. Appleby23, N. Armesto38, G. Azuelos26, M. Bai47, D. Barber11, J. Bartels12, J. Behr11, O. Behnke11, S. Belyaev10, I. BenZvi47, N. Bernard16, S. Bertolucci10, S. Bettoni10, S. Biswal32, J. Bluemlein11, H. Boettcher11, H. Braun48, S. Brodsky39, A. Bogacz28, C. Bracco10, O. Bruneing10, E. Bulyak98, A. Bunyatian11, H. Burkhardt10, I.T. Cakir54, O. Cakir53, R. Calaga47, E. Ciapala10, R. Cifci91, A.K. Cifci91, B.A. Cole29, J.C. Collins46, J. Dainton17, A. De Roeck10, D. d’Enterria10, A. Dudarev10, A. Eide43, E. Eroglu45, K.J. Eskola14, I. Favart96, M. Fitterer10, S. Forte24, P. Gambino42, T. Gehrmann50, C. Glasman22, R. Godbole27, B. Goddard10, T. Greenshaw17, A. Guffanti99, V. Guzey26, C. Gwenlan34, T. Han36, Y. Hao47, F. Hang10, W. Herr10, B. Holzer10, M. Ishitsuka41, M. Jacquet33, B. Jeanneret10, J.M. Jimenez10, H. Jung11, J.M. Jowett10, H. Karadeniz54, D. Kayran47, F. Kocac45, A. Kilic45, K. Kimura41, M. Klein17, U. Klein17, T. Kluge17, G. Kramer12, M. Korosteliev23, A. Kosmicki10, P. Kostka11, H. Kowalski11, D. Kuchler10, M. Kuze41, T. Lappi14, P. Laycock17, E. Levichev31, S. Levonian11, V.N. Litvinenko47, A. Lombardi14, C. Marquet10, B. Mellado97, K.H. Mess10, S. Moch11, I.I. Morozov31, Y. Muttoni10, S. Myers10, S. Nandi26, P.R. Newman93, T. Omori44, J. Osborne10, Y. Papaphilippou10, E. Paoloni35, C. Pascaud33, H. Paukkunen38, E. Perez10, T. Pieloni15, E. Pilcher45, A. Polini94, V. Ptitsyn47, Y. Pupkov31, V. Radescu13, S. Raychaudhuri27, L. Rinolfi10, R. Rohim27, J. Rojo24, S. Russenschuck10, C.A. Salgado38, K. Sampf41, E. Sauvan19, M. Sahin91, U. Schneekloth11, A.N. Skrinsky31, T. Schoerner21, S. Sednios11, D. Schulte10, H. Spiesberger21, A.M. Stasto46, M. Strikman46, M. Sullivan39, B. Surrow95, S. Sultansoy91, Y.P. Sun39, W. Smith20, I. Tapan45, P. Tael92, E. Tassi52, H. Ten Kate10, J. Terron22, H. Thiesen10, L. Thompson23, K. Tokushuku44, R. Tomas23, Garcia10, D. Tommasini90, D. Trbojevic47, N. Tsoupas47, J. Tuckmantel90, S. Turkoz53, K. Tywoniuk18, C. Ucel10, J. Urankawa44, P. Van Mechelen92, A. Variola37, R. Veness10, A. Vivoli10, P. Vobly31, R. Wallny51, G. Watt10, G. Weiglein12, C. Weiss28, U.A. Wiedemann10, U. Wienands39, F. Willeke47, V. Yakimenko47, A.F. Zarnecki49, F. Zimmermann10, F. Zomer33