Alessandra Valloni

PRELIMINARY DESIGN OF THE CERN ERL TEST FACILITY
EIC14 Workshop on Accelerator Science and Technology for Electron-Ion Collider

17–21 March 2014,
Thomas Jefferson National Accelerator Facility
Goals of a CERN ERL Test Facility

- Test facility for SCRF cavities and modules
- Test facility for multi-pass multiple cavity ERL
- Injector studies: DC gun or SRF gun
- Study reliability issues, operational issues!
- Vacuum studies related to FCC
- Test facility for controlled SC magnet quench tests
- Possible use for detector development, experiments and injector
 suggests ~1 GeV as final stage energy
- Could it be foreseen as the injector to LHeC ERL and to FCC?
Goals of a CERN ERL Test Facility

- Test facility for SCRF cavities and modules
- Test facility for multi-pass multiple cavity ERL
- Injector studies: DC gun or SRF gun
- Study reliability issues, operational issues!
- Vacuum studies related to FCC
- Possible use for detector development, experiments and injector suggests ~1 GeV as final stage energy
- Test facility for controlled SC magnet quench tests
- Could it be foreseen as the injector to LHeC ERL and to FCC?

<table>
<thead>
<tr>
<th>TARGET PARAMETER*</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection Energy [MeV]</td>
<td>5</td>
</tr>
<tr>
<td>Final Beam Energy [MeV]</td>
<td>900</td>
</tr>
<tr>
<td>Normalized emittance $\gamma\varepsilon_{x,y} [\mu m]$</td>
<td>50</td>
</tr>
<tr>
<td>Beam Current [mA]</td>
<td>10</td>
</tr>
<tr>
<td>Bunch Spacing [ns]</td>
<td>25 (50)</td>
</tr>
<tr>
<td>Passes</td>
<td>3</td>
</tr>
</tbody>
</table>

*in few stages
Outline

1. STAGES OF BUILDING DESIGN
 - LAYOUTS
 - BASELINE PARAMETERS

2. ARC OPTICS ARCHITECTURE

3. TEST FACILITY FOR SC MAGNET TESTS
Planning for each stage

STEP 1
SC RF cavities, modules and e⁻ source tests
- Injection at 5 MeV
- 1 turn
- 75 MeV/linac
- Final energy 150 MeV

<table>
<thead>
<tr>
<th>ARC</th>
<th>ENERGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC 1</td>
<td>80 MeV</td>
</tr>
<tr>
<td>ARC 2</td>
<td>155 MeV</td>
</tr>
</tbody>
</table>

*4 SRF 5-cell cavities at 802 MHz
Planning for each stage

STEP 2
Test the machine in Energy Recovery Mode
- Injection at 5 MeV
- 3 turns
- 75 MeV/linac
- Final energy 450 MeV

<table>
<thead>
<tr>
<th>ARC</th>
<th>ENERGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC 1</td>
<td>80 MeV</td>
</tr>
<tr>
<td>ARC 2</td>
<td>155 MeV</td>
</tr>
<tr>
<td>ARC 3</td>
<td>230 MeV</td>
</tr>
<tr>
<td>ARC 4</td>
<td>305 MeV</td>
</tr>
<tr>
<td>ARC 5</td>
<td>380 MeV</td>
</tr>
<tr>
<td>ARC 6</td>
<td>455 MeV</td>
</tr>
</tbody>
</table>

Recirculation realized with vertically stacked recirculation passes
Planning for each stage

STEP 3
Additional SC RF modules test
Full energy test in Energy Recovery Mode
- Injection at 5 MeV
- 3 turns
- 150 MeV/linac
- Final energy 900 MeV

<table>
<thead>
<tr>
<th>ARC</th>
<th>ENERGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC 1</td>
<td>150 MeV</td>
</tr>
<tr>
<td>ARC 2</td>
<td>300 MeV</td>
</tr>
<tr>
<td>ARC 3</td>
<td>450 MeV</td>
</tr>
<tr>
<td>ARC 4</td>
<td>600 MeV</td>
</tr>
<tr>
<td>ARC 5</td>
<td>750 MeV</td>
</tr>
<tr>
<td>ARC 6</td>
<td>900 MeV</td>
</tr>
</tbody>
</table>
Outline

1. STAGES OF BUILDING DESIGN
 - LAYOUTS
 - BASELINE PARAMETERS

2. ARC OPTICS ARCHITECTURE FOR STEP 3

3. TEST FACILITY FOR SC MAGNET TESTS
Layout

5 MeV Extraction

6 4 2

1 3 5

5 MeV Injector

ARC 1 – 155 MeV
ARC 3 – 455 MeV
ARC 5 – 755 MeV
Linac 1 Multi-Pass Optics

A. Valloni, A. Bogacz
Linac 2 Multi-Pass Optics

β_y, β_x, Disp_x

905 MeV 755 MeV 605 MeV 455 MeV 305 MeV 155 MeV 5 MeV
Arc 1 optics

155 MeV

Arc dipoles:
Ldip = 71.8 cm
B = 5.67 kGauss
ρ = 91.45 cm
Arc 3 optics

455 MeV

\[\beta_x, \beta_y, \text{Disp}_x, \text{Disp}_y \]

Arc dipoles:
\[L_{\text{dip}} = 90.58 \text{ cm}, \quad B = 6.58 \text{ kGauss}, \quad \rho = 230.66 \text{ cm} \]

9.8° bends
(1 rec. + 3 sec.)

2-step vert. Spreader

8×22.5° sector bends

2-step vert. Combiner

A. Valloni, A. Bogacz
Arc 5 optics

755 MeV

Arc dipoles:
Ldip = 90.58 cm
B = 10.92 kGauss
ρ = 230.66 cm

Vertical chicane
8×22.5° sector bends
Vertical chicane

A. Valloni, A. Bogacz
Arc 1,3,5 layout

- Synchronous acceleration
- Isochronous arcs
- Achromatic arc
- FMC optics

Total Arc length for Arc 1,2,3:
- 34.5112 m
- 94 x λrf

For 6 arcs:
- 84 DIPOLES
- 114 QUADRUPOLES
Footprint

ARCS

Total length for Arc 1, 2, 3
34.5112 m
94 x λrf
(last cavity linac 1 to first cavity linac 2)

Total length for Arc 2, 4
34.2704 m
101 x λrf
(last cavity linac 1 to first cavity linac 2)

Total length for Arc 6
34.4574 m
101.5 x λrf
(last cavity linac 1 to first cavity linac 2)

LINAC

Total length ~ 13 m

CHICANE INJ/EXTR

Length ~ 1.75 m

TOTAL DIMENSIONS

42 m x 13.7 m
Arc optics OPTION 2

SAME OPTICS LAYOUT FOR ALL THE ARCS 900/750/600/450/300/150 MeV

Arc dipoles:
- 8×22.5° bends
- Ldip = 100.6 cm
- $\rho = 256.3$ cm

3 DIOPOLES ON TOP OF EACH OTHER

* Attilio Milanese

<table>
<thead>
<tr>
<th>B FIELD</th>
<th>1GeV</th>
<th>750MeV</th>
<th>600MeV</th>
<th>450MeV</th>
<th>300MeV</th>
<th>150MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.30 T</td>
<td>0.97 T</td>
<td>0.78 T</td>
<td>0.58 T</td>
<td>0.39 T</td>
<td>0.19 T</td>
<td></td>
</tr>
</tbody>
</table>

Arc quadrupoles
- Lquads = 30 cm

<table>
<thead>
<tr>
<th>Kq[m$^{-2}$]</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.01</td>
<td>2.91</td>
<td>2.09</td>
<td>1.19</td>
<td></td>
</tr>
</tbody>
</table>
Incoherent Synchrotron radiation in return arcs

<table>
<thead>
<tr>
<th>ARC</th>
<th>E [MeV]</th>
<th>ρ [cm]</th>
<th>ΔE [keV]</th>
<th>σE/E [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150</td>
<td>91.459</td>
<td>0.0280</td>
<td>1.17e-5</td>
</tr>
<tr>
<td>2</td>
<td>300</td>
<td>91.459</td>
<td>0.4191</td>
<td>6.42e-5</td>
</tr>
<tr>
<td>3</td>
<td>450</td>
<td>230.66</td>
<td>0.8230</td>
<td>8.13e-5</td>
</tr>
<tr>
<td>4</td>
<td>600</td>
<td>230.66</td>
<td>2.5726</td>
<td>1.53e-4</td>
</tr>
<tr>
<td>5</td>
<td>750</td>
<td>230.66</td>
<td>6.2394</td>
<td>2.73e-4</td>
</tr>
<tr>
<td>6</td>
<td>900</td>
<td>230.66</td>
<td>12.881</td>
<td>4.47e-4</td>
</tr>
<tr>
<td>7</td>
<td>750</td>
<td>230.66</td>
<td>6.2394</td>
<td>5.89e-6</td>
</tr>
<tr>
<td>8</td>
<td>600</td>
<td>230.66</td>
<td>2.5726</td>
<td>7.49e-6</td>
</tr>
<tr>
<td>9</td>
<td>450</td>
<td>230.66</td>
<td>0.8230</td>
<td>9.98e-6</td>
</tr>
<tr>
<td>10</td>
<td>300</td>
<td>91.459</td>
<td>0.4191</td>
<td>1.49e-6</td>
</tr>
<tr>
<td>11</td>
<td>150</td>
<td>91.459</td>
<td>0.0280</td>
<td>2.93e-3</td>
</tr>
</tbody>
</table>

- **Beam Energy loss**
 \[
 \Delta E = \int P_\gamma dt = P_\gamma \frac{\pi \rho}{\beta c} \quad \Delta E(GeV) = C_\gamma \frac{E^4}{\rho} \frac{1}{2}
 \]

- **Beam Energy Spread**
 \[
 \frac{\sigma_E}{E} = \sqrt{1.4397 \times 10^{-27} \frac{\pi \gamma^5}{\rho^2}}
 \]
Next steps

- Complete Step 2 and Step 1 configuration and optics layout
Linac 1 - Step 2
Linac 2 - Step 2

\(\beta_y, \beta_x, \text{Disp}_x\)

\[
\begin{align*}
455 & \text{ MeV} \\
380 & \text{ MeV} \\
305 & \text{ MeV} \\
230 & \text{ MeV} \\
155 & \text{ MeV} \\
80 & \text{ MeV} \\
5 & \text{ MeV}
\end{align*}
\]
Step 2 optics

- **80 MeV**
- **230 MeV**
- **380 MeV**

Dimensions:
- 13.43 m
- 13.66 m
1. STAGES OF BUILDING DESIGN
 - LAYOUTS
 - BASELINE PARAMETERS
2. ARC OPTICS ARCHITECTURE
3. TEST FACILITY FOR SC MAGNET TESTS

- Test facility for SCRF cavities and modules
- Test facility for multi-pass multiple cavity ERL
- Test facility for controlled SC magnet quench tests
- Injector studies: DC gun or SRF gun
- Study reliability issues, operational issues!
- Vacuum studies related to FCC
- Possible use for detector development, experiments and injector suggests ~1 GeV as final stage energy
- Could it be foreseen as the injector to LHeC ERL and to FCC?
Controlled quench tests of SC magnets

WE ARE INVESTIGATING THE POSSIBILITY OF USING THE TEST FACILITY FOR SC MAGNET TESTS

Requirements in terms of:

- Beam energy, intensity and pulse length (energy deposition)
- Space for the magnets installation (possible tests of cable samples and full cryo magnets)
- Cryo requirements
- Vacuum requirements
- Powering needs
Controlled quench tests of SC magnets

Study beam induced quenches (quench thresholds, quenchino thresholds) at different time scales for:

- SC cables and cable stacks in an adjustable external magnetic field
- Short sample magnets
- Full length LHC type SC magnets

Quench limits of LHC dipole as expected from QP3 simulations for different pulse durations

Courtesy A. Verweij
Beam parameters to generate a given amount of energy deposition

CALCULATIONS AND FLUKA SIMULATIONS

Beam parameters

<table>
<thead>
<tr>
<th>Energy, MeV</th>
<th>Emittance, m</th>
<th>Sigma, cm</th>
<th>FWHM, cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>1.70E-07</td>
<td>0.092</td>
<td>0.22</td>
</tr>
<tr>
<td>300</td>
<td>8.52E-08</td>
<td>0.065</td>
<td>0.15</td>
</tr>
<tr>
<td>450</td>
<td>5.68E-08</td>
<td>0.053</td>
<td>0.13</td>
</tr>
<tr>
<td>600</td>
<td>4.26E-08</td>
<td>0.046</td>
<td>0.11</td>
</tr>
<tr>
<td>750</td>
<td>3.41E-08</td>
<td>0.041</td>
<td>0.10</td>
</tr>
<tr>
<td>900</td>
<td>2.84E-08</td>
<td>0.038</td>
<td>0.09</td>
</tr>
<tr>
<td>1000</td>
<td>2.55E-08</td>
<td>0.036</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Results are given for half of bulky target because of symmetry

Binning: 1 mm³ bins

Copper target
(no magnetic field)

Cylinder of copper
Radius = 50cm
Length = 100cm

Energy deposition, GeV/cm³/e⁻
Beam parameters to generate a given amount of energy deposition

CALCULATIONS AND FLUKA SIMULATIONS

Copper target
(no magnetic field)

- Cylinder of copper
 - Radius = 50 cm
 - Length = 100 cm

Beam parameters

<table>
<thead>
<tr>
<th>Energy, MeV</th>
<th>Emittance, m</th>
<th>Sigma, cm</th>
<th>FWHM, cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>1.70E-07</td>
<td>0.092</td>
<td>0.22</td>
</tr>
<tr>
<td>300</td>
<td>8.52E-08</td>
<td>0.065</td>
<td>0.15</td>
</tr>
<tr>
<td>450</td>
<td>5.68E-08</td>
<td>0.053</td>
<td>0.13</td>
</tr>
<tr>
<td>600</td>
<td>4.26E-08</td>
<td>0.046</td>
<td>0.11</td>
</tr>
<tr>
<td>750</td>
<td>3.41E-08</td>
<td>0.041</td>
<td>0.10</td>
</tr>
<tr>
<td>900</td>
<td>2.84E-08</td>
<td>0.038</td>
<td>0.09</td>
</tr>
<tr>
<td>1000</td>
<td>2.55E-08</td>
<td>0.036</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Results are given for half of bulky target because of symmetry

Binning: 1 mm^3 bins

Energy deposition, GeV/cm^3/e^-

- Peak at z = 0.6 cm, r=0
 - Peak value = 0.2199 GeV/cm^3

- Peak at z = 2.1 cm, r=0
 - Peak value = 1.0785 GeV/cm^3

150 MeV

1 GeV

V. Chetvertkova, D. Wollmann

CERN
Beam parameters to generate a given amount of energy deposition

![Graph showing energy deposition and depth of max dE/dx against energy.](image)

- **Max energy deposition**
- **Depth of max dE/dx**

Graphs showing
- Depth of maximum dE/dx vs. energy (MeV)
- Maximum energy deposition vs. energy (MeV)
Beam parameters to generate a given amount of energy deposition

Number of particles

Beam parameters to generate a given amount of energy deposition

MB quench limit @ 3.5 TeV

1 GeV = 1.602×10^{-7} mJ

MB quench limit 450 GeV is 140 mJ/cm3 in 10ms:
~2.2×10^9 e$^-$ @ 1 GeV necessary

MB quench limit 7 TeV is 16 mJ/cm3 in 10ms:
~2.6×10^8 e$^-$ @ 1 GeV necessary

Quench threshold

Maximum value for the energy deposition
Summary

- The concept of the ERLTF is designed to allow for a staged construction with verifiable and useful stages for an ultimate beam energy in the order of 1 GeV.

- Design complementary to & synergetic with other proposals

- A Design Study of the ERL-TF has started (a sketch of the optics configuration is provided and other options are under investigation) in collaboration with other institutes (as JLAB)

- First analysis of having controlled quench tests of next generation superconducting magnets has been carried out. Beam parameters seem to match the requirements….further investigation is required!

- Completion of Conceptual design study of an ERL-TF at CERN by the end of 2015

Thank you for your attention

Many thanks to A. Bogacz, V. Chetvertkova, D. Wollmann, and the LHeC Study Group Collaboration